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Abstract
Quantum computing, first introduced in the early 70’s, has taken on new life with the

development of efficient algorithms, experimental quantum communication systems and basic
quantum gates. This paper discusses the implications of quantum technologies, including both
quantum communication and quantum computing, to the field of computer security. Although
classical cryptography and security are still viable technologies, the introduction of quantum
technology will force us to reevaluate some of our approaches to security. This paper provides an
introduction to those issues that must be reevaluated.
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1 Introduction
Quantum mechanics, since introduced, has provided us with a new look at the physical world.

What classically has been seen as a deterministic world, where behavior of particles and systems is
well defined, is actually composed of a collection of particles whose behavior is probabilistic. In
addition, we can actually never know the true state of a particle since measurement of one aspect
of the state may perturb the value of other aspects of the state. This perturbation affect is known
as the Heisenburg uncertainty principle and is the basis of some of the security issues presented by
quantum communication systems discussed in Section 2.

The probabilistic behavior of a particle of the system is typically modeled as the
superposition of a collection of state values and their corresponding probability amplitudes. If ai is
the probability amplitude of state i and Si is the values of state i, the superposition is represented
as:

where the amplitudes are complex numbers such that ∑i|ai|
2=1. In a quantum computer,

calculations are performed on this superposition by the application of unitary transformations
(reversible transformations). The benefit of quantum computation is that we can perform
transformations (calculations) on all states simultaneously. The only drawback is that upon
measuring the system to obtain a result the probability amplitudes collapse and we are only able to
obtain one result per calculation. The result is based on the current probability amplitudes of the
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system. For algorithms that involves a large search space with unique answers, such as factoring
or cryptanalysis we can obtain answers on a quantum computer much faster than we can on a
classical computer. Since the result is based on probability amplitudes, quantum algorithms are
usually run a few times to provide a very high probability of obtaining the correct answer. The
security ramifications of this are discussed in Section 3.

2 Quantum Communication and Computer Security
This section discusses the use of quantum technology for secure dissemination of

information. In this section we assume the existence of two trustworthy parties Alice and Bob and
an untrustworthy adversary Eve. In the discussions following, we assume that Alice initiates
establish communication with Bob.

2.1 Quantum Key Distribution (a.k.a. Quantum Cryptography)
The central concept behind quantum key distribution is the use of quantum properties of

signals to prevent eavesdropping on a message between two parties. The message contains the
bits of a one-time pad (a use once encryption key) for secure communication. In general, Alice
generates a random stream of bits, encodes them onto a communication channel using quantum
techniques and sends the message to Bob. Bob measures the signal and then exchanges
information with Alice to determine the key. The strength of this system is based on the fact that
we can create quantum signals that consists of a superposition of values. Unless the signal is read
correctly, a random value will be read. An exchange based on the approach outlined in [1] occurs
as follows:

1. Alice creates photons in one of four non-orthogonal polarization states (e.g., horizontal,
vertical, right circular or left circular) and sends them to Bob.

2. Bob measures the signal randomly using one of two bases (either circular or rectilinear).
3. Bob tells Alice which basis he used for each photon
4. Alice tells him which measurements matched the encoding.
5. Alice and Bob keep the data for the correct measurements (e.g., rectilinear has horizontal

= 0 and vertical = 1; circular has left circular = 0 and right circular =1).
6. Bob and Alice check for tampering by publicly choosing a random subset of bits and

comparing them through a hash or parity checking mechanism.

The strength of this type of scheme is based on the quantum nature of photons, where the
measurement of the photon along one basis will result in a random value and will completely
destroy the information along the other basis. If Alice encoded along the rectilinear basis and the
photon was read on the circular basis, then not only is the resulting value random, but the
encoded information lost.

There is no physical method for an eavesdropper to read the message stream without being
detected, not even making a copy of the stream, since to make a copy you have to measure along
the bases. Thus, the security of this type of key distribution holds.

Of course, there is no authentication in this scheme, so an active eavesdropper, Eve, can
intercept all messages, both public and quantum encoded, between Alice and Bob, and insert all of
her own messages, pretending to be Bob to Alice and Alice to Bob. No mechanism for
authentication has yet been demonstrated for quantum computing systems. There have only been



references to unconditional authentication, with no analysis of the applicability of these
approached to quantum technology. This is essential since the existence of a quantum computer
will make all current public-key algorithms obsolete.

2.2 Quantum Bit Commitment via Communication
A bit commitment protocol is used to enable Alice to commit to the choice of a value (which

could be a single bit or a collection of bits) but keep that choice secret until a later time. One
mechanism for this protocol, introduced by Bennett and Brassard [1], involves Alice choosing a
bit value and encoding it in an entangled quantum state and sending the encoding to Bob. At some
later time Alice declares the choice and provides Bob with sufficient information to decode the
quantum state. Bob can then verify Alice’s choice. Specifically, Alice takes a random string of bits
R = r1, …, rn and encodes each bit in one of two bases, rectilinear R+ if she wants a 0 or diagonal
Rx if she wants a 11. Bob selects a random string of bases b1,…,bn ∈ {+,x}* with which he reads
R’. When Alice wishes to declare her choice of basis she announces the original bit string R. Bob
can then determine the bit by looking at the bit locations i where his R’ does not match R. It is
these locations where Bob picked the wrong basis bi. If all of the locations where r’i ≠ ri agree on
the basis, then Bob interprets this as the correct choice.

Unfortunately, due to the uncertainty nature of quantum mechanics, Alice can always delay
her choice until the time she declares it and thus forces Bob to correctly verify that new choice.
Specifically, instead of sending a string of random values ri, Alices sends a string of entangled
states (encoded with equal probability in either basis. Prior to revealing her choice she reads the
string on the basis according to her current (not original) bit choice. This current value is what she
sends to Bob, and given the nature of entangled states, Bob will always have already read the
“correct” value for the chosen basis.

Additionally Mayers [4] proved that unconditionally secure quantum bit commitment is
not possible using any form quantum encoding to secure the value of the bit. There is a large class
of cryptographic algorithms that have been shown to implement bit commitment. Since
unconditionally secure quantum bit commitment is impossible using quantum encodings, these
cryptographic algorithms must therefore not be realizable using quantum encodings.

2.3 Quantum Encryption via Communication
Data encryption is one use of quantum communication channels that has been suggested.

Given that we have quantum key distribution, we can theorize the use of the one-time key to
specify a quantum encryption of data. Unfortunately, further exploration shows that quantum
communication provides limited benefits to this form of communication.
• One possible approach uses the bits of the key to specify which basis to use to transmit the

data. A 1 in the key could specify rectilinear basis, while a 0 in the key could specify circular
basis. Unfortunately, this approach is not secure. Although we could detect the presence of
Eve as with the key distribution protocol, too much information would be released.

 Assume that Eve randomly chooses a basis for each bit and reads the message using that
basis. If Eve was correct in choosing the basis, which occurs with probability 50%, Eve will
obtain the correct value. If Eve was incorrect in choosing the basis, she obtains a random
value, which is still correct 50% of the time. Standard probability calculations show that Eve
obtains the correct value 75% of the time (.5*1 + .5*.5).



• Another more secure approach uses the bits of the key to specify the direction of the encoding
in a single basis, where the basis is publicly known. Eve will thus always be correct in
choosing the basis and will get the correct value only 50% of the time. This is exactly what
classical secure communication does using the one-time pad. Unfortunately, since the basis is
publicly known, Eve can retransmit the message completely masking the eavesdropping and
thus providing no benefit over the use of classical communication.

• A third approach combines the two above approaches, using one bit of the one-time pad to
specify which basis to use and uses the next bit to specify the direction of the encoding. Thus,
when Eve selects the correct basis, she will get the correct answer only 50% of the time and
her efforts can be detected through selected checksum mechanisms. Although this approach is
secure, the additional overhead of two key bits per data bit may be unacceptable.

3 Quantum Computing and Computer Security
Quantum computing is derived via the construction of a quantum computer. That is, a device

whose central computation engine is based on the concept of encoding information into quantum
states, called qubits, or quantum bits. The benefit of such computation is that the values of the
qubits are not necessarily fixed, but rather can encode a superposition of states. All operations on
a quantum computer can therefore be executed on all states simultaneously.

Quantum computers are still theoretical, as only simple quantum gates have been constructed.
Some of the difficulties in constructing large scale quantum computers still have to be overcome.
Once these problems are solved the major limitation of the power of the quantum computer will
be the number of bits manipulated by the computer. A quantum computer with n bits can
manipulate 2n simultaneous values. However, even with these limitations, it is not inconceivable
that complex quantum computers could be constructed within a few decades.

3.1 Quantum Factoring
In [5], Shor energized the quantum computing community by presenting an algorithm that

calculates the prime factorization of very large numbers in polynomial time. The algorithm
requires a very large number of quantum gate operations for large number of bits in the number to
be factored (on the order of hundreds of bits).  To factor a number N the algorithm chooses a
random number x and calculates xr ≡ 1 mod N. Factors of N can now be computed, with high
probability, by computing gcd(xr/2±1, N). Of course, finding r is difficult and is at the heart of
Shor’s solution. First, the algorithm chooses a smooth number (one with small prime factors) N2 <
q < 2N2 and builds the quantum state:

This state represents an even probability distribution over q-a values. The algorithm then modifies
this distribution to greatly increase the probability of reading the correct result and reducing the
probability of reading an incorrect result. To do this, the quantum computer calculates:
from which we get, through application of Fourier transform:
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Measuring both arguments of this superposition we obtain c = m and xk. The measurement
gives, with high probability, c = λq/r; where λ is an integer. Given q, with a few runs of the
algorithm, we can compute r and thus factor N, with high probability. The run-time complexity of
this form of quantum factoring is on the order of L2 where L is the number of bits needed to
represent N.

This result (which has been shown to be the optimal result) is tremendously faster than
classical factoring techniques and as such places algorithms such as RSA in jeopardy. The only
saving grace is that this technique requires a very large number of gates, although slower, less
complex implementations may be possible.

3.2 Quantum Code Books
In [3] Brassard discussed the implementation of a quantum phone book. The phone book

encodes into the quantum computer all the information in the phone book. The system is
initialized and through a series of computations a result emerges. Boyer, et.al. [2] have proven
that such an approach requires a minimum of roughly ½√N iterations to search the phone book.
Although there are some restrictions on the usefulness of this approach, it is reasonable to assume
that one could develop a code-book that can be used to launch a successful known-plaintext
attack against an unknown encryption key. The system needs to be designed to implement the
encryption algorithm with the input plain-text and output cipher text as parameters of the system.
The system then executes the necessary number of iterations until the resulting key is generated.
To break a block cipher that enciphers a 64-bit block using a 56-bit key (i.e., DES) would require
roughly 227 operations. Given the needs of the quantum computer to have unitary transformations
we would need a quantum computer with at least 184-bit capability (64 bits output, 64 bit data
input and the 56 bit key). To break the cipher, assuming the ability to calculate 210 operations per
second, the computer would require 36 hours. To break a cipher that uses 112 bits (i.e., triple-
DES) would require 255 operations, or 245 seconds (1.1 million years). Therefore, it appears that
even quantum computers have their limits when applied to use brute force algorithms. Current
practice considers 100 bit keys a minimum level for security. A move to 200 bits would ensure
security even for quantum computers (an ultra high speed quantum computer, operating at 250

operations per second would still require 17.8 million years to break a cipher that uses a 200 bit
key).

3.3 Bit Commitment and Encryption via Computing
The problem with quantum bit commitment, as pointed out by Mayers [4], is that Alice can

always delay her choice of the bit until the time she reveals the value. With classical bit
commitment, and subsequent communication, there are no probabilities involved. All data values
are precise, and security is obtained through the computational infeasibility of breaking the
system. Although quantum computers have been shown to be substantially faster than classical
computers, there are limits to their computational power. This implies that there must still be a set
of algorithms for which bit commitment is computationally secure.
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Using quantum computers we can encrypt messages using very complex algorithms. To date
no such algorithms have been proposed in the literature. We suspect that an algorithm to
implement exponentiation (as used in RSA public key encryption) could execute much faster than
current classical computer implementations and may be sufficiently secure so as to be
computationally secure even on a large scale quantum computer.

3.4 Quantum Random Number Generator
In classical cryptography there is often a need for the generation of random numbers. There

have been numerous reports in the literature of problems associated with the use of pseudo-
random number generators that are implemented in software. These generators often exhibit
patterns of behavior that can be exploited by an attacker to break the system. This section outlines
quantum algorithm that implements a true random number generator.

The quantum search algorithm assumes the ability to generate a quantum state that is an
equal superposition of all possible states. The unitary operation A:

transforms a quantum bit |0> into a quantum state where both values |0> and |1> occur with equal
probability. A simple random number generator consists of initializing an n-bit quantum register to
|0>, applying A to each of the bits, resulting in the state:

Reading the value from this state gives a resulting value in the range 0, 2n-1. Each value occurs
with equal probability. Thus we get a true uniform n-bit random number generator.

4 Conclusions
Quantum computers and quantum communication will affect modern cryptographic systems.

In some instances, as we have shown, modern cryptography will have to be either redefined, or at
least implemented with a larger key space. However, as with any new technology there are certain
approaches to implementing a solution are not appropriate for that technology, as we have seen
with quantum encryption. Also, with any secure communication protocol we still need to worry
about authentication of the end users. Quantum key distribution is fine, but is limited to non-
authenticated key establishment. New algorithms or protocols will have to be developed to
establish such authentication.

There is still much research to be done on quantum computing and quantum security to
determine the capabilities and limitations of this new and exciting technology. For example it is
not known if secure quantum protocols can be realized for coin-tossing or secure multi-party
computations.
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